

# **Module Definition Form (MDF)**

| Module code: MOD004979                      | Version: 4 Date Amended: 20/Mar/2024 |              |         |           |  |
|---------------------------------------------|--------------------------------------|--------------|---------|-----------|--|
| 1. Module Title                             |                                      |              |         |           |  |
| Semantic Data Technologies                  |                                      |              |         |           |  |
| 2a. Module Leader                           |                                      |              |         |           |  |
| Arooj Fatima                                | Arooj Fatima                         |              |         |           |  |
| 2b. School                                  | 2b. School                           |              |         |           |  |
| School of Computing and Information Scien   | ces at Anglia Ruski                  | n University |         |           |  |
| 2c. Faculty                                 |                                      |              |         |           |  |
| Faculty of Science and Engineering          |                                      |              |         |           |  |
| 3a. Level                                   |                                      |              |         |           |  |
| 7                                           |                                      |              |         |           |  |
| 3b. Module Type                             |                                      |              |         |           |  |
| Standard (fine graded)                      |                                      |              |         |           |  |
| 4a. Credits                                 |                                      |              |         |           |  |
| 30                                          |                                      |              |         |           |  |
| 4b. Study Hours                             |                                      |              |         |           |  |
| 300                                         |                                      |              |         |           |  |
| 5. Restrictions                             |                                      |              |         |           |  |
| Туре                                        | Module Code                          | Modu         | le Name | Condition |  |
| Pre-requisites:                             | None                                 |              |         |           |  |
| Co-requisites:                              | None                                 |              |         |           |  |
| Exclusions:                                 | None                                 |              |         |           |  |
| Courses to which this module is restricted: |                                      |              |         |           |  |

#### LEARNING, TEACHING AND ASSESSMENT INFORMATION

#### 6a. Module Description

Businesses, large organisations, and government departments are increasingly producing and publishing large semi structured or unstructured data, on the web, generated collection from their own activities and from the wider internet and social media. Such a huge amount of data poses many challenges and one of these challenges is to search data effectively using syntax-based search.

Semantic web technologies have provided the tools, methodologies and theoretical underpinnings to enable data to be automatically interpreted by machines for knowledge-based tasks. Semantic data technologies help to create structured or semi-structured data with well-defined meanings. These technologies are being used by the search engines to make searches more effective. To create domain specific applications to search data, we need to process user queries which are written in natural language. Natural Language Processing (NLP) is the automatic processing of text written in a natural (human) language such as English. NLP encompasses a wide range of tasks, from low-level tasks, such as segmenting text into sentences and words, to high-level complex applications such as semantic annotation. The combination of Natural Language Processing and Semantic Web technologies is able to deal with a broad range of structured and unstructured data, which cannot be addressed by traditional relational tools.

This module will provide the knowledge and skills for students to structure semantic data, develop ontological models and use these to create knowledge based applications which utilise NLP techniques. After completing this module, the students will be able to design semantic models and implement applications that utilise NLP methods. The knowledge and skills learned in this module complement those of information system analysis design and data base implementation as well as advanced application development, providing a theoretical and practical base for enterprise-wide data handling. Therefore, students ideally should have knowledge of the design and development of web, database and software applications.

#### 6b. Outline Content

- Conceptual data modelling and analysis - RDF and RDF schema - Ontology construction and evaluation, - OWL - SPARQL - Semantic application development and supporting tools. - Intelligent data analysis - Natural Language Processing - segmentation, words and tokens, text normalisation.

### 6c. Key Texts/Literature

The reading list to support this module is available at: <a href="https://readinglists.aru.ac.uk/">https://readinglists.aru.ac.uk/</a>

#### 6d. Specialist Learning Resources

Software: Students should have access to Python package (or equivalent), the Protégé Ontology editor (or equivalent) and the Apache Jena framework (or equivalent SPARQL implementation).

| 7. Learning Outcomes (threshold standards) |                                                             |                                                                                                                                         |  |  |
|--------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No.                                        | Туре                                                        | On successful completion of this module the student will be expected to be able to:                                                     |  |  |
| 1                                          | Knowledge and Understanding                                 | Demonstrate an in-depth knowledge of semantic data representation technologies.                                                         |  |  |
| 2                                          | Knowledge and Understanding                                 | Understand and critically appraise the uses of semantic mark up and ontologies for big data, internet and knowledge based applications. |  |  |
| 3                                          | Knowledge and Understanding                                 | Understand the theoretical underpinnings and their application in semantic based reasoning.                                             |  |  |
| 4                                          | Intellectual, practical, affective and transferrable skills | Apply conceptual modelling principles to create semantic data models.                                                                   |  |  |
| 5                                          | Intellectual, practical, affective and transferrable skills | Utilise semantic models to implement knowledge based applications in a variety of domains.                                              |  |  |
| 6                                          | Intellectual, practical, affective and transferrable skills | Reflect critically on their own and others designs for semantic based applications.                                                     |  |  |

| 8a. Module Occurrence to which this MDF Refers |            |                                             |          |                  |
|------------------------------------------------|------------|---------------------------------------------|----------|------------------|
| Year                                           | Occurrence | Period                                      | Location | Mode of Delivery |
| 2025/6                                         | ZZF        | Template For Face To Face Learning Delivery |          | Face to Face     |

| 8b. Learning Activities for the above Module Occurrence |       |                   |                                                         |  |
|---------------------------------------------------------|-------|-------------------|---------------------------------------------------------|--|
| Learning Activities                                     | Hours | Learning Outcomes | Details of Duration,<br>frequency and other<br>comments |  |
| Lectures                                                | 24    | 1-3               | Lecture 2 hr x 12 weeks                                 |  |
| Other teacher managed learning                          | 24    | 4-6               | Practical session 2 hr x 12 weeks                       |  |
| Student managed learning                                | 252   | 1-6               | Independent study 21 hours per week                     |  |
| TOTAL:                                                  | 300   |                   |                                                         |  |

## 9. Assessment for the above Module Occurrence

| Assessment<br>No. | Assessment Method | Learning<br>Outcomes | Weighting (%) | Fine Grade or<br>Pass/Fail | Qualifying<br>Mark (%) |
|-------------------|-------------------|----------------------|---------------|----------------------------|------------------------|
| 010               | Coursework        | 1-6                  | 100 (%)       | Fine Grade                 | 40 (%)                 |

## Report, equivalent to 5000 words

In order to pass this module, students are required to achieve an overall mark of 40% (for modules at levels 3, 4, 5 and 6) or 50% (for modules at level 7\*).

In addition, students are required to:

- (a) achieve the qualifying mark for each element of fine graded assessment as specified above
- (b) pass any pass/fail elements

[\* the pass mark of 50% applies for all module occurrences from the academic year 2024/25 – see Section 3a of this MDF to check the level of the module and Section 8a of this MDF to check the academic year]