

Module code: MOD007113	Version: 2 Date Amended: 09/Dec/2022
------------------------	--------------------------------------

1. Module Title

Advanced Engineering Mathematics

2a. Module Leader

Mohamed Yehia

2b. School

School of Engineering and the Built Environment

2c. Faculty

Faculty of Science and Engineering

3a. Level

5

3b. Module Type

Standard (fine graded)

. Credits	

4b. Study Hours	
150	

5. Restrictions				
Туре	Module Code	Module Name	Condition	
Pre-requisite:	MOD007035	Applied Engineering Mathematics	Compulsory	
Co-requisites:	None			
Exclusions:	None			
Courses to which this module is restricted:				

6a. Module Description

Building on previous modules, here you will continue applying mathematics to express and solve engineering problems, moving on to include more complex mathematical concepts. You'll be introduced to applications of calculus, complex numbers, Laplace transforms, and Fourier Series, helping you to develop an appreciation of the overwhelming influence that these concepts have had on engineering analysis and design, particularly with their application to specialist software. You'll learn to apply differentiation and integration technics to solve engineering problems in dynamics, control, structural analysis, engineering optimisations, and computational engineering. You'll also learn to analyse engineering concepts by solving complex equations and differential equations using analytical and numerical techniques. Coding is also used to develop your problem-solving skills and create solutions to complex mathematical problems; you'll apply this to engineering problems to create a logical sequence of steps or solutions after which you'll develop tests to check the solution is correct.

6b. Outline Content

- Applications of calculus
- Differential equations
- Laplace transform
- Fourier Series
- Complex numbers
- Numerical methods
- Introduction to coding

6c. Key Texts/Literature

The reading list to support this module is available at: https://readinglists.aru.ac.uk/

6d. Specialist Learning Resources

Microsoft Office, Matlab

7. Learning Outcomes (threshold standards)			
No.	Туре	On successful completion of this module the student will be expected to be able to:	
1	Knowledge and Understanding	Analyse complex problems to reach substantiated conclusions using the first principles of mathematics and engineering principles.	
2	Intellectual, practical, affective and transferrable skills	Critically analyse the suitability of techniques for the solution of a range of routine and non-routine engineering problems.	
3	Intellectual, practical, affective and transferrable skills	Select and apply appropriate computational and analytical techniques to model complex problems, recognising the limitations of the techniques employed.	
4	Intellectual, practical, affective and transferrable skills	Use coding to develop solutions to complex mathematical problems.	

8a. Module Occurrence to which this MDF Refers				
Year	Occurrence	Period	Location	Mode of Delivery
2025/6	ZZF	Template For Face To Face Learning Delivery		Face to Face

8b. Learning Activities for the above Module Occurrence				
Learning Activities	Hours	Learning Outcomes	Details of Duration, frequency and other comments	
Lectures	12	1-4	1 hour lecture per week	
Other teacher managed learning	24	1-4	2 hours per week of tutorials and workshops	
Student managed learning	114	1-4	Self Directed Learning	
TOTAL:	150			

9. Assessment for the above Module Occurrence					
Assessment No.	Assessment Method	Learning Outcomes	Weighting (%)	Fine Grade or Pass/Fail	Qualifying Mark (%)
010	Coursework	3, 4	30 (%)	Fine Grade	30 (%)
Maximum 1000-word equivalent report, aligned with the C2 Engineering Council's AHEP4 Learning Outcomes					
Assessment No.	Assessment Method	Learning Outcomes	Weighting (%)	Fine Grade or Pass/Fail	Qualifying Mark (%)
011	Examination Chelmsford	1-3	70 (%)	Fine Grade	30 (%)
2 hour closed book examination; aligned with the C3 Engineering Council's AHEP4 Learning Outcomes					

In order to pass this module, students are required to achieve an overall mark of 40% (for modules at levels 3, 4, 5 and 6) or 50% (for modules at level 7*).

In addition, students are required to:

(a) achieve the qualifying mark for each element of fine graded assessment as specified above

(b) pass any pass/fail elements

[* the pass mark of 50% applies for all module occurrences from the academic year 2024/25 – see Section 3a of this MDF to check the level of the module and Section 8a of this MDF to check the academic year]