

Module code: MOD009156	Version: 3 Date Amended: 13/Jun/2024
------------------------	--------------------------------------

1. Module Title

Engineering Dynamics

2a. Module Leader

Hossein Bisheh

2b. School

School of Engineering and the Built Environment

2c. Faculty

Faculty of Science and Engineering

3a. Level4

3b. Module Type

Standard (fine graded)

4a. Credits	
15	

4b. Study Hours	
150	

5. Restrictions					
Туре	Module Code	Module Name	Condition		
Pre-requisites:	None				
Co-requisites:	None				
Exclusions:	None				
Courses to which this module is restricted:					

٦

6a. Module Description

Gain knowledge and fundamental understanding of vector mathematics and its application to particle and rigid body dynamics. You'll start by learning the terminologies, definitions, and applications of the dynamics. The module covers kinematics in one and two dimensions, including the relations between displacement, velocity, and acceleration of an object. It also includes kinetics in one and two dimensions, examining the relationships between force and acceleration applied on an object. As a student, you can apply these principles to many design process applications, including machine and mechanism designs.

6b. Outline Content

- Basic concepts in dynamics
- Fundamentals of vector mechanics and its application to dynamics
- Kinematics and Kinetics of particles
- Kinematics and Kinetics of rigid bodies
- · Applying all the concepts to a real-world problem

6c. Key Texts/Literature

The reading list to support this module is available at: https://readinglists.aru.ac.uk/

6d. Specialist Learning Resources

Computer room with MATLAB

7. Learning Outcomes (threshold standards)					
No.	Туре	On successful completion of this module the student will be expected to be able to:			
1	Knowledge and Understanding	Distinguish applications of elements of machine dynamics in a design process; understand definitions and categorisation of engineering dynamics			
2	Knowledge and Understanding	Illustrates understanding of key principles related to particle and rigid body dynamics, and solve complex problems			
3	Intellectual, practical, affective and transferrable skills	Apply knowledge of mathematics and engineering principles to solve complex problems in machine dynamics			
4	Intellectual, practical, affective and transferrable skills	Conduct computer simulations, compare, and justify the results with respect to the theoretical methods in the context of complex machine dynamic problems			

8a. Module Occurrence to which this MDF Refers				
Year	Occurrence	Period	Location	Mode of Delivery
2025/6	ZZF	Template For Face To Face Learning Delivery		Face to Face

8b. Learning Activities for the above Module Occurrence				
Learning Activities	Hours	Learning Outcomes	Details of Duration, frequency and other comments	
Lectures	30	1-3	Three hours per week for ten weeks	
Other teacher managed learning	6	4	Three hours per week for two weeks, Computer lab activity	
Student managed learning	114	1-4	Self-managed study, engage with formative assessment, and preparing assessment report	
TOTAL:	150			

9. Assessment for the above Module Occurrence					
Assessment No.	Assessment Method	Learning Outcomes	Weighting (%)	Fine Grade or Pass/Fail	Qualifying Mark (%)
010	Examination Chelmsford	1-3	50 (%)	Fine Grade	30 (%)
Examination: 1.5 hours (maps to Engineering Council Learning Outcome C1)					
Assessment No.	Assessment Method	Learning Outcomes	Weighting (%)	Fine Grade or Pass/Fail	Qualifying Mark (%)
011	Coursework	4	50 (%)	Fine Grade	30 (%)
Report: maximum 1200 words (maps to Engineering Council Learning Outcome C12)					

In order to pass this module, students are required to achieve an overall mark of 40% (for modules at levels 3, 4, 5 and 6) or 50% (for modules at level 7*).

In addition, students are required to:

(a) achieve the qualifying mark for each element of fine graded assessment as specified above (b) pass any pass/fail elements

[* the pass mark of 50% applies for all module occurrences from the academic year 2024/25 – see Section 3a of this MDF to check the level of the module and Section 8a of this MDF to check the academic year]