

Module code: MOD010261	Version: 2 Date Amended: 13/Jun/2024
------------------------	--------------------------------------

1. Module Title

Materials Science, Solid Mechanics, and Vibration Project

2a. Module Leader

Hossein Bisheh

2b. School

School of Engineering and the Built Environment

2c. Faculty

Faculty of Science and Engineering

3a. Level

5

3b. Module Type

Standard (fine graded)

4a. Credits	
30	

4b. Study Hours	
300	

5. Restrictions				
Туре	Module Code	Module Name	Condition	
Pre-requisite:	MOD009156	Engineering Dynamics	Compulsory	
Pre-requisite:	MOD009161	Structural Mechanics	Compulsory	
Co-requisite:	MOD007035 Applied Engineering Mathematics Comp			
Exclusions:	None			
Courses to which this module is restricted:	None			

LEARNING, TEACHING AND ASSESSMENT INFORMATION

6a. Module Description

This project-based module follows the theme of improving the design of an existing mechanical appliance/product using the design and analysis concepts for enhanced performance metrics. This module has been designed to give you the opportunity to work in groups in the multidisciplinary area of mechanical engineering to achieve a common goal. You'll use specialised engineering software packages, e.g., Autodesk Inventor, to design, analyse, and optimise a product and/or its components.

You'll be introduced to the concepts of structural design, solid mechanics, mechanical design, mechanical vibration, mechanical integrity, materials science, and their importance while designing a product. You'll learn about failure analysis of mechanical parts and components along with stress, strain, and vibration analysis. This module will help you to understand and apply theoretical concepts related mechanical design and materials science in design, analysis, and development of products.

6b. Outline Content

- Advanced CAD modelling and design of complex products.
- Review of basic material properties: Young's modulus and Poisson's ratio, yield stress, and ultimate strengths.
- Engineering Materials: structure, properties, manufacturing process and applications.
- Solid mechanics: review on load and stress analysis, transformation of stress, principal stresses, buckling, energy methods, etc.
- Mechanical vibration analysis of engineering structures and components.

6c. Key Texts/Literature

The reading list to support this module is available at: https://readinglists.aru.ac.uk/

6d. Specialist Learning Resources

Computer Room and Mechanical Engineering Laboratory

7. Learning Outcomes (threshold standards)			
No.	Туре	On successful completion of this module the student will be expected to be able to:	
1	Knowledge and Understanding	Design a complex product based on the principles of 'engineering design and analysis' techniques to improve functionality using advanced 3D CAD part and assembly modelling as well as recognising the limitations of the techniques employed.	
2	Knowledge and Understanding	Understand the concept of mechanical design, structural analysis, solid mechanics, mechanical vibration, and materials science for a specific product and formulate their impact on the structural design and integrity.	
3	Intellectual, practical, affective and transferrable skills	Design and create complex 3D part and assembly models using a 3D CAD package, prepare detailed design, analysis, and optimisation of a product using the knowledge of materials science, solid mechanics, and mechanical vibration.	
4	Intellectual, practical, affective and transferrable skills	Demonstrate effective teamwork, communication, and decision-making procedures, as well as communicate effectively on complex engineering matters with technical and non-technical audiences.	

8a. Module Occurrence to which this MDF Refers				
Year	Occurrence	Period	Location	Mode of Delivery
2025/6	ZZF	Template For Face To Face Learning Delivery		Face to Face

8b. Learning Activities for the above Module Occurrence				
Learning Activities	Hours	Learning Outcomes	Details of Duration, frequency and other comments	
Lectures	72	1-4	Module lectures/tutorials WKs 1-12, Tri1, 6 hours per week	
Other teacher managed learning	0	None	None	
Student managed learning	228	1-4	Self-directed learning	
TOTAL:	300			

9. Assessment for the above Module Occurrence						
Assessment No.	Assessment Method	Learning Outcomes	Weighting (%)	Fine Grade or Pass/Fail	Qualifying Mark (%)	
010	Practical	1-4	50 (%)	Fine Grade	30 (%)	
15 min in-class g	15 min in-class group presentation followed by 5 minutes of Q&A (equivalent to 2000 words)					
Assessment No.	Assessment Method	Learning Outcomes	Weighting (%)	Fine Grade or Pass/Fail	Qualifying Mark (%)	
011	Examination Chelmsford	2-3	50 (%)	Fine Grade	30 (%)	
Exam (2 hours)						

In order to pass this module, students are required to achieve an overall mark of 40% (for modules at levels 3, 4, 5 and 6) or 50% (for modules at level 7*).

In addition, students are required to:

(a) achieve the qualifying mark for each element of fine graded assessment as specified above

(b) pass any pass/fail elements

[* the pass mark of 50% applies for all module occurrences from the academic year 2024/25 – see Section 3a of this MDF to check the level of the module and Section 8a of this MDF to check the academic year]